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Abstract

Federated learning is a task that a central server learns a deep learning model
by repeating the process of aggregating and re-sending the trained models from
separated local agents under the privacy restrictions. We aim to overcome catas-
trophic forgetting issue in federated learning on non-IID data by adapting solutions
proposed in continual learning literature, where the catastrophic forgetting occurs
when a aggregated model is re-trained on each server with corresponding data distri-
bution. In our algorithm, we newly assume the parameter importance of each agent
is accessible to the server without invading privacy protection, and the server also
use it to aggregate the local agent’s updated weights instead of uniform summation,
preventing the important parameters from drift by other models which is trained
on distinct data. Our extensive experiments demonstrate remarkable performance
gains by the proposed approach in non-IID setting on multiple benchmarks.

1 Introduction

Modern edge devices such as mobile phones or vehicles have access to a wealth of data suitable
for learning models, which in turn can greatly improve the generalization of the models. However,
due to data privacy concerns, it’s impractical to gather all the data from the edge devices at the data
center and conduct centralized training. Federated learning [8] is emerging paradigm for distributing
training of machine learning models in networks of remote devices, without requiring any of the
participants to reveal their private data to a centralized entity.

Despite the scalability and communication efficiency of the federated learning, it shows significant
performance degradation on heterogeneity of local data where each agent posses non-IID training
data. This issue is analogy to catastrophic forgetting in continual learning in the sense that models
lose the previous information from models of previous step during model update on local tasks or
training other task, respectively. Specifically, the forgetting issue in federated learning is caused in
two places: weight divergence caused by local update and simple average of local models in the
central server.

To overcome the problem, we propose a novel federated learning framework, which reduce weight
divergence of local models by adopting solutions proposed in continual learning literature for local
model update. We newly assume the central server can access the fisher information of each agent,
which does reveal any private information of agents. We also propose importance-based global
aggregation algorithm to preserve the knowledge of local tasks in constructing global model in the
server. Our algorithm uses weighted average based on fisher information instead of uniformly average
when aggregating the local agent’s updated weights. To the best of our knowledge, our method is the
first attempt to use fisher information when aggregating each agent’s weights.

The main contribution of our work are summarized as follows:
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Figure 1: Comparison between popular federated learning approaches and ours. Unlike previous
methods communicates only updated local models for training a global model, each agent, in our
method, additionally sends information of parameter importance F kt . Central server then aggregates
the information and sends the global importance Ft to participant agents of next round.

• We propose a novel federated learning framework, which reduces weight divergence between
local models by regularizing local model update based on the global weight importance
downloaded from the server.

• We also propose a novel global aggregation algorithm based on parameter importance from
agents, which maintains knowledge of local models effectively.

• We show that our method achieves performance gain under the non-IID settings compared
to state-of-the-art baselines on multiple classification benchmarks.

2 Related Work

2.1 Continual learning

Among diverse approaches to overcome the catastrophic forgetting of the old tasks in continual
learning, regularization-based approaches identify important weights of the model for each task and
give constraints to them. EWC [4] adopts Fisher information matrix as a measure of the importance
of the parameter to put high regularization to the important nodes. On the other hand, SI [11] consider
the learning trajectory by using gradient path integral. RWalk [1] generalizes EWC and SI to take
full advantage of both Fisher-based and optimization path-based parameter importance. We adopt
EWC [4] in our local model update stage to prevent the weight divergence.

2.2 Federated learning

The typical federated learning paradigm consists of two steps: (i) each edge device trains a model
downloaded from a central server with its local dataset independently, and (ii) the server gathers the
locally trained models and aggregates them to obtain a shared global model. One of the standard
aggregation methods is FedAvg [8] where parameters of local models are averaged element-wise with
weights proportional to sizes of the client datasets, but this method shows significant performance
degradation when the local data is collect in non-IID manner. To overcome the limitation, FedProx [7]
adds a proximal term to the client cost functions, thereby limiting the impact of local updates by
keeping them close to the global model. Clustering based approaches [9, 10, 2, 3] construct several
global models according to the distribution of local data to prevent weight drift by averaging models
from distinct tasks.

While all these methods communicate only updated model parameters for training a single global
model, we additionally communicate the information for weight importance from each agents’ models,
and mitigate prevent the catastrophic forgetting by considering the information for both local update
and global aggregation.
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Algorithm 1: Algorithm of the proposed method. The K agents are indexed by k; B is the local
minibatch size, E is the number of local epochs, and η is the learning rate.
Server executes:
initialize θ0
for each round t = 1, 2, ... do

St ← (random set of m agents)
for each agent k ∈ St in parallel do

θkt+1, F
k
t+1 ← AgentUpdate(k, θt, Ft)

θt+1 ← 1
m

∑
k F̄

k
t+1θ

k
t+1 // Update global model with local weight importance.

Ft+1 ← 1
m

∑
k F

k
t+1 // Update global Fisher matrix.

AgentUpdate(k, θ, F ): // Run on agent k

B ←(split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
L(θk) = Lk(θk) + λ

2Ft
(
θk − θ

)2
// Regularize Update local with global fisher matrix.

θ ← θ − η∇L(θ)
F kt+1 ← γFt + (1− γ)F kt+1. // Update fisher matrix

return θ, F to server

3 Proposed Method

In this section we introduce a novel federated learning framework which utilizes the importance
of model parameters in local and global updating to mitigate catastrophic forgetting in federated
learning scenario. Overall framework of the proposed method is illustrated in Figure 1.

3.1 Global Update with Local Weight Importance

Suppose that we have a random set St of m agents with for each communication round t, and each
agent k ∈ {1, . . . ,m} have their local training datasets Dk = {(xi, yi)}Nk

i=1. Before sending the local
model to the server, each agent calculates the importance of the model parameters for learning each
local task. Inspired by [4], we employ the Fisher information to measure the importance of each
model parameter. Specifically, at communication round t, each agent k ∈ {1, . . . ,m} with local
updated weight θ∗ calculates fisher matrix as

F kθ,jj | θ∗ =

(
1

Nk

∑
i∈Dk

∇θ (log p (yi | xi, θ))∇θ (log p (yi | xi, θ))>
)
jj

∣∣∣∣∣∣
θ∗

. (1)

Then, each agent sends their updated model along with the Fisher information matrix to the server,
and the server averages the local models weighting by the importance received from each agent as
follows:

Ft+1 =
1

m

∑
k

F kt+1 and θt+1 =
∑
k

F̄ kt+1θ
k
t+1, (2)

where F̄ kt+1 indicates the normalized value of F kt+1 which is computed over each layer from a client
and then over all clients, sequentially. Giving more weights on importance parameters for learning
local data, the server prevents the important parameter from drift in the aggregation phase. Note that,
sending the additional information matrix of the local models does not violate any privacy concern in
the federated learning scenario.

3.2 Local Update with EWC

To prevent the local updated model from diverging, we adapt EWC [4] algorithm to the local training
at the agents. To be specific, the central server sends not only aggregated model but also the averaged
Fisher information matrix Ft ← 1

K

∑
k F

k
t to the participants for the next training step. On each
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Table 1: Accuracy (%) for different backbone
in non-IID setting on MNIST and CIFAR-10
dataset.

Method MNIST CIFAR-10
MLP CNN MLP CNN

FedAvg [8] 85.70 93.62 39.64 41.90
FedProx [7] 85.57 93.67 40.78 42.05
Ours 89.19 95.08 39.89 42.88

Table 2: Number of communication round to reach
target test accuracy in MNIST dataset.

Method MLP (85%) CNN (93%)

FedAvg [8] 91 88
FedProx [7] 90 88
Ours 52 (× 1.73) 61 (× 1.44)

round t, starting from initial point, the agents optimize their local loss by running SGD for E local
epochs using the following objective,

L(θkt+1) = Lk(θkt+1) +
λ

2
Ft
(
θkt+1 − θt

)2
, (3)

where Lk(θ) is loss for local task of agent k, λ sets how important the model downloaded from the
server is compared to the new one, and t denotes communication round. When each agent train
the model on each local task, EWC will try to keep the network parameters close to the aggregated
parameters which contains information of whole tasks over agents. Finally, we update the importance
of each agent at the end of the local update step:

F kt+1 ← γFt + (1− γ)F kt+1. (4)

The updated importance is sent back to the server along with the updated local model. The overall
framework is summarized in Algorithm 1.

4 Experimental Results

This section represents our experimental results for image classification given local data of each agent
are non-IID. We also provide ablation study to discuss the characteristics of the proposed approach in
comparison to existing methods.

4.1 Image classification on non-IID data

Datasets We conduct experiments on two popular image classification benchmarks, MNIST [6]
and CIFAR-10 [5]. We follow sampling scheme from [8] on both benchmarks to simulate data
heterogeneity between agents. To simulate data heterogeneity between agents, we sort the data by
the class label, partitions them into multiple shards, and assign each agent without overlapping,
following [8].

Implementation details We use two simple models: 1) A simple multilayer-perceptron with one
hidden layer with channel of 200 using ReLU activations (MLP), 2) A CNN with two 5x5 convolution
layers (the first with 32 channels, the second with 64, followed by 2x2 max pooling) (CNN). We
train both models on non-IID federated setting where the total number of agents K is set to 100 and
participation rate of agents at each round m is set to 0.1. Models are trained using SGD with learning
rate of 10−2 for 10 local epochs while local batch size is set to 10. The number of communication
round is set to 100 in MNIST and 200 in CIFAR-10, respectively. For updating Fisher information,
the γ value is set to 0.9.

Results The performance comparison on MNIST and CIFAR-10 dataset is shown in Table 1. On
MNIST, our method achieves performance gain of 3.49% and 1.46% in MLP and CNN, respectively,
compared to the baseline FedAvg [8]. While FedAvg [8] aggregates the local agent’s parameters
by simple averaging, our method exploits the importance from agents to consider the each agent’s
influence on the training while updating the global model. On CIFAR-10, our method shows
competitive accuracy compared to FedProx [7].

Table 2 shows the number of communication round to reach target test accuracy 85%, 93% on
MNIST for MLP, CNN backbone network, respectively. Our algorithm shows the fastest convergence
compared to the baseline methods.
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Table 3: Abalation study on MNIST dataset. L2 is L2 regularization without using Fisher information.
In MLP, λ is set to 105 on EWC and 0.05 on L2. In CNN, λ is set to 10 on EWC and 0.005 on L2.

Method 10 rounds 100 rounds
MLP CNN MLP CNN

FedAvg [8] 50.93 61.94 85.70 93.62
FedProx [7] (FedAvg + L2) 50.93 62.19 85.57 93.67
FedAvg + EWC 54.38 64.42 85.88 93.65
FedAvg + weighted average 68.45 76.54 88.16 94.93
FedAvg + EWC + weighted average (ours) 70.25 78.11 89.19 95.08

Figure 2: Test accuracy on CIFAR-10 with different rate of participating agents.

4.2 Ablation study

Component Analysis We analyze the impact of each component in our method. Table 3 represents
that, on MNIST, the use of all component achieves the highest accuracy and our algorithm consistently
improves performance by incorporating the proposed methods, especially the weighted average with
Fisher information for the construction of a global model.

Client participation rate Figure 2 shows the test accuracy in terms of client participation rate. For
all three settings, our method consistently outperforms the baseline method FedAvg [8] with margins.

Table 4: Accuracy (%) on MNIST dataset in terms of continual learning method.

Method MLP CNN

EWC 89.19 95.08
RWalk 88.82 94.44

RWalk We further apply RWalk [1] on our method. Specifically, gradient path-based importance is
calculated and updated along with the Fisher information-based importance. The comparison result is
shown in Table 4. The additional usage of gradient path-based importance rather causes degradation
in the accuracy. We suspect that using RWalk imposes too much regularization on the local model,
making it difficult to learn a locally given task before the end of the local update iteration.

5 Conclusion

We have investigated a new approach to novel federated learning method with continual learning
literature. The proposed method prevents catastrophic forgetting in each client’s local updating. With
respect to aggregating model weights from clients, we demonstrate that the weighted summation
method based on the parameter importance is highly effective.

Although the proposed method improves the performance with large margin, our algorithm requires
doubled communication cost for sharing fisher information from server to each client, and vice versa.
For the future work, we would like to reduce the communication cost by sharing only subset of fisher
information with thresholding or adopting quantization method.
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